NO. SHEETS STATE PROJECT REFERENCE NO. STATE N.C. 45354.1.13 (BD-5108L) 21 1

STATE OF NORTH CAROLINA

DEPARTMENT OF TRANSPORTATION **DIVISION OF HIGHWAYS** GEOTECHNICAL ENGINEERING UNIT

STRUCTURE SUBSURFACE INVESTIGATION

PROJ. REFERENCE NO. 45354.1.13 (BD-5108L) __ F.A. PROJ. *BRZ-2903(1)*

COUNTY RANDOLPH

PROJECT DESCRIPTION BRIDGE NO. 215 ON SR 2903 (OSBORN

MILL RD.) OVER BACHELOR CREEK

CONTENTS

SHEET DESCRIPTION TITLE SHEET 1 LEGEND 2 3 SITE PLAN BORE LOGS, CORE REPORTS AND PHOTOS, SOUNDING RODS 4-18 FIELD SCOUR REPORT 19-20ROCK TEST RESULTS 21

PERSONNEL J.K. STICKNEY M.L. SMITH

C.L. SMITH

C.M. WHALEN, Ir.

Summit Personel

M. BRANDON

A. CRUMBLEY

W. DUGGINS

A. NASH

M. SKEEN

INVESTIGATED BY B.D. WORLEY

CHECKED BY OMY C.M. WHALEN, Jr.

K.B. MILLER SUBMITTED BY_

JUNE 2011 DATE_

CAUTION NOTICE

THE SUBSURFACE INFORMATION AND THE SUBSURFACE INVESTIGATION ON WHICH IT IS BASED WERE MADE FOR THE PURPOSE OF STUDY, PLANNING, AND DESIGN, AND NOT FOR CONSTRUCTION OF PAY PURPOSES. THE VARIOUS FIELD BORING LOGS, MOCK CORES, AND SOL TEST DATA AVAILABLE MAY BE REVIEWED ON INSPECTED IN RALEIGH BY CONTACTING THE N.C. DEPARTMENT OF TRANSPORTATION.

GEOTECHNICAL ENDINEERING UNIT AT (919) 250-4088, NEITHER THE SUBSURFACE PLANS AND REPORTS, NOR THE FIELD BORING LOGS, MOCK CORES, OR SOIL TEST DATA ARE PART OF THE CONTRACT.

CENERAL SOIL AND ROCK STRATA DESCRIPTIONS AND NONCATED BOUNDARIES ARE BASED ON A GEOTECHNICAL INTERPRETATION OF ALL AVAILABLE. SUBSURFACE DATA AND MAY NOT NECESSARILY REFLECT THE ACTUAL SUBSURFACE CONDITIONS BETWEEN BORNOS OR BETWEEN SAMPLED STRATA WITHIN THE BORNHOLE, THE LABORATORY SAMPLE DATA AND THE IN SITU INV-PLACE) TEST DATA CAN BE RELED ON ONLY TO THE DEGREE OF RELIABILITY INNERENT IN THE STANDARD TEST METHOD. THE OBSERVED WATER LEVELS OR SOIL MOSTURE CONDITIONS INDICATED IN THE SUBSURFACE WEVESTIGATIONS ARE AS RECORDED AT THE TIME OF THE INVESTIGATION, THESE WATER LEVELS OR SOIL MOISTURE CONDITIONS MAY VARY CONSIDERABLY WITH TIME ACCORDING TO CLIMATIC CONDITIONS INCLUDING TEMPERATURES, PRECIPITATION, AND WIND, AS WELL AS OTHER NON-CLIMATIC FACTORS.

THE BIDDER OF CONTRACTOR IS CAUTIONED THAT DETAILS SHOWN ON THE SUBSURFACE PLANS ARE PRELIMINARY ONLY AND IN MANY CASES THE FINAL DESIGN DETAILS ARE DIFFERENT, FOR BIDDING AND CONSTRUCTION PURPOSES, REFER TO THE CONSTRUCTION PLANS AND DOCUMENTS FOR FINAL DESIGN INFORMATION ON THIS PROJECT, THE DEPARTMENT DOES NOT WARRANT OR GUARANTEE THE SUFFICIENT OR ACCURACY OF THE INVESTIGATION MADE, NOR THE INTERPRETATIONS MADE, OR OPINION OF THE DEPARTMENT AS TO THE TYPE OF MATERIALS AND CONDITIONS TO BE ENCOUNTERED. THE BIDDER OR CONTRACTOR IS CAUTIONED TO MAKE SUCH INDEPENDENT SUBSURFACE INVESTIGATIONS AS HE DEEMS NECESSARY TO SATISFY HUMSLEF AS TO CONDITIONS TO BE ENCOUNTERED ON THIS PROJECT. THE CONTRACTOR SHALL HAVE NO CLAIM FOR ADDITIONAL COMPENSATION OR FOR AN EXTENSION OF TIME FOR ANY REASON RESULTING FROM THE ACTUAL CONDITIONS ENCOUNTERED AT THE SITE DIFFERING FROM THOSE INDICATED IN THE SUBSURFACE INFORMATION.

NOTE - THE INFORMATION CONTAINED HEREIN IS NOT IMPLIED OR GUARANTEED BY THE N. C. DEPARTMENT OF TRANSPORTATION AS BEING ACCURATE NOR IT IS CONSIDERED TO BE PART OF THE PLANS, SPECIFICATIONS, OR CONTRACT FOR THE PROJECT.

NOTE - BY HAVING REQUESTED THIS INFORMATION THE CONTRACTOR SPECIFICALLY WAIVES ANY CLAIMS FOR INCREASED COMPENSATION OR EXTENSION OF TIME BASED ON DIFFERENCES BETWEEN THE CONDITIONS INDICATED HEREIN AND THE ACTUAL CONDITIONS AT THE PROJECT SITE.

DRAWN BY: B.D. WORLEY and D.W. FIELDS

PROJECT REFERENCE NO.	SHEET NO.
45354.I.I3 (BD-5I08L)	2

NORTH CAROLINA DEPARTMENT OF TRANSPORTATION DIVISION OF HIGHWAYS GEOTECHNICAL ENGINEERING UNIT

SOIL AND ROCK LEGEND, TERMS, SYMBOLS, AND ABBREVIATIONS

RUSTIC BBCK 6 MX NP 18 MX 18 M											•																
Section Sect					SOTI	DE	SCRI	PTIC	าท					T .						GF	RADA	TION		\dashv			
CONSIDERATION CONTINUES	THAT CAN D	E PENETRAT PER FOOT A	ED WIT	H A CONTI	DLIDATEI NUOUS F	D, SEM FLIGHT FENETR	I-CONSI POVER ATION	OLIDAT R AUGE TEST	ED, OF	YIELD	LESS THAN 6, ASTM D-LS	86). SOIL	s	I POORLY	GH	NOEO)				SENTATI LES ARE	ON OF	PARTICLE SIZ PROXIMATELY			COARSI ALSO	Ε.	
## ACCUPATION FOR THE PROPERTY OF A STATE AND ACCUPATION ASSESSMENT ASSESSM	CLASSIFICAT	TON IS BAS	ED ON	THE AASHI	O SYSTI	EM. BA	sic de	SCRIPT	TONS	GENER!	MLLY SHALL	(NCLUOE:								· · · ·							
DEATH CONTINUES Continue	AS MINERAL	OGICAL COM	POSETEC	N, ANGULA	ILTY, STI	RUCTUR	E PLAS	STICIT	Y, ETC	. EXAMP	LEs							OR ROUN	<u>10300</u>					ANGUL	AR,		
## 15 305 P45010 ORD ## 15 20 A 1 A 2 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1		SC	IL L	EGENE	AND) AA	SHT) CL	ASS	SIFIC	ATION																
SAMPLE 1.00											ORGAN	NIC MATER	IALS	MINERA WHENEV	L NA	MES SUCH	CONSID	IARTZ, F EREO O	ELDSP OF SIGN	VIFICANCE	E		AE USED II	N DESCI	RIPTION	s 	
The control of the			-		_	,	A-4	A-5	A-6				Į							COMP	RESS		BATE 1 500	Trink 0			
2	SYMBOL	A-1-a A-1-b		A-2-4 A-2	5 A-2-6	A-2-7		774		n-7-6		,,,,			M	IODERATE	LY COMP	RESSI				L TOUCD L	IMIT EQUAL	. TO 31	-50		
Section Sect			1					1				SILT-											ŘΙΑL				
MODIFIED 100	49	38 MX 58 MX	51 MN	35 MX 35	MX 35 MD	(35 MX	36 MN	36 MN	36 M	4 36 MN	SDILS	CLAY		TRACE	OF C	RGANIC N	MATTER	S 2	OILS - 3%	50 3 -	01LS - 5%		TRACE	ı.	12%		
Control Cont	FEORED FINIT			40 MX 41 N	IN 48 MX	41 MN	40 MX	41 MN	48 MX	41 MN	SOILS	WITH															
MATCH STATE OF CLAYER SELT ON CLAY	PLASTIC INDEX	NOEX 6 MX NP 18 MX												HIGHLY	ORG	ANIC		>	19%				HIGHLY	35%	AND A	BOYE	
SEARCH S	CROUP INDEX	BOEX 6 MX NP UB MX													•									- -			
STATE SPACE SPAC		BOEX 6 MX NP 18 MX 18 MX 18 MX 18 MX 19 MX 19 MX 11 MN												I .									'ER DRILLI	NG			
### DEFENDENCE 10 COOKSTISTINCY OF DEVESTINGS 10 COOKSTISTINGS 10 C			SAND	GRAVEL	. AND S	SAND	\$0	ILS	SO	ILS 	MAILE			Į ▼	_		STATIC	WATER	R LEVE	EL AFTE	24	HOURS					
TEXTURE OR GRAIN SELL - 30 PLOF A-7-4 SUBGROUP SE - 1L - 30 PLOF A-7-4 SUBGROUP SELL - 30 PLOF		A EXCELLENT TO GOOD FAIR TO POOR POOR PI OF A-7-5 SUBGROUP IS \$\text{LL} - 30\); PI OF A-7-6 SUBGROUP IS \$\text{LL} - 30\) CONSISTENCY OR DENSENESS COMPACTNESS OR PRANCE OF STANDARD RANGE OF UNCON- MARY SOIL TYPE COMPACTNESS OR PRESENTED COMPRESSIVE STANDARD												_						TURATED	ZONE,	OR WATER B	EARING ST	RATA			
PAINANY SOIL TYPE		A EXCELLENT TO GOOD FAIR TO POOR POOR PI OF A-7-5 SUBGROUP IS \$\lequiv LL - 30 ; PI OF A-7-6 SUBGROUP IS \$\leq												1 V	'00'	-	SPRING	OR SE	EP								
### PROPRIES OF CONSTRUCT CO		CONSISTENCY OR DENSENESS COMPACTNESS OR RANGE OF TANDARD COMPRESSIVE STR CONSISTENCY (N-VALUE) COMPACTNESS OR COMPRESSIVE STR COMPRESSIVE STR (TONS/FT2:																	MIS	CELLA	NEO	JS SYMB	DLS			-	
CONSTRUCTION CONS	PRIMARY	CONSISTENCY OR DENSENESS IMARY SOIL TYPE COMPACTNESS OR CONSISTENCY COMPACTNESS OR CONSISTENCY COMPACTNESS OR COMPRESSIVE STRICT COMPACTNESS OR COMPRESSIVE STRICT COMPACTNESS OR COMPRESSIVE STRICT (N-VALUE) COMPRESSIVE STRICT (TONS/F12)																		(9 ort	OMT TEST B	IORING	5		W/ C0	RE
MICHAN MONTONESSE 18 TO 39		TIMES SUME FRAME SAND SAND SAND SAND SAND SAND SAND SAND												}		SOIL SY	MBOL			(₽	AUGER BORE	ING		_		
VENT LIBRALY VENT SOFT C2 C6,25 C6,25 C6,25 C7,25 C7,2	MATER	DIDEX B B A MX B MX 12 MX 16 MX No MX TYPES STONE FRAGE OR GRAVEL, NO SANO SANO SANO SANO SANO SANO SANO SANO												🗿) -	CORE BORIN	iC	Q.	E)—	SPT RI	EFUSAL
SENSOLITY STIFF	(NON-	CRAYEL AND SANO SANO SANO SOILS SOILS SOILS SOILS SANO SANO SANO SOILS SOIL]						PM.	ò	MONITORING	WELL				
SIT-CLAY MATERIAL WEIGHT STIFF WEIGH STIFF WEIGH STIFF WEN STI	GENEA	CK												=77=77							_						
15 TO 39	SILT-	CLAY	- 1		0. 5 TO 1.0		-	_				ARY		~			- '										
TEXTURE OR GRAIN SIZE				VERY ST	(FF		1	15 TO	39			2 TO 4			•					<	\bigcirc						
DOBSTRICE 10					XTUR	E OF	R GR	MIAS	SIZ	ZE										(CONE PENET	TROMETER	TEST			
BOULDER COBBLE CRAVEL COMSE FIRE SALD SULT CLAY SAME SULT CLAY SAME COBBLE				4												-					•		10D				
MILLON M						T	COAF	tSE	Т			SILT.	C! AY	AR -	AUC	ER REEU	ISAI					ATTONS		vsti -	VANE	SHEAR	TEST
Common MM 305 75 2.0 6.25 6.05 6.085 6.085											J			BT -	DOR	ING TER)		MICA	MICACE			WEA	WEATH	ERED	
SOIL MOISTURE - CORRELATION OF TERMS SOIL MOISTURE SCALE SOCIATION OUTCE FOR FIELD MOISTURE DESCRIPTION OUTCE FOR FIELD MOISTURE DESCRIPTION OUTCE FOR FIELD MOISTURE DESCRIPTION OUTCE FOR FIELD MOISTURE USUALLY LIQUID: VERY WET, USUALLY FROM BELOV THE GROUND WATER TABLE FOSS FOSSILIFEROUS FRACE - FRACTURED, FRACTURED, FRACTURED FRACE - FRACTURED, FRACTURED FRACE - FRACTURED, FRACTURED OPTIMUM MOISTURE - WET - (W) SEMISOLITI, REQUIRES DRYING TO ATTAIN OPTIMUM MOISTURE - WET - (W) SEMISOLITI, REQUIRES DRYING TO ATTAIN OPTIMUM MOISTURE - WET - (W) SEMISOLITI, REQUIRES DRYING TO ATTAIN OPTIMUM MOISTURE - WET - (W) SEMISOLITI, REQUIRES DRYING TO ATTAIN OPTIMUM MOISTURE - WET - (W) SEMISOLITI, REQUIRES DRYING TO ATTAIN OPTIMUM MOISTURE - WET - (W) SEMISOLITI, REQUIRES DRYING TO ATTAIN OPTIMUM MOISTURE - WET - (W) SEMISOLITI, REQUIRES DRYING TO ATTAIN OPTIMUM MOISTURE - WET - (W) SEMISOLITI, REQUIRES DRYING TO ATTAIN OPTIMUM MOISTURE - WET - (W) SEMISOLITI, RECOMPACTED TRIANIAL CRR - CALFORNIA BEARNA HILL - HIGHLY - WET - (W) ATTAIN OPTIMUM MOISTURE - WOID RATIO - WET - (W) SEMISOLITI, RECOMPACTED FRACE - FRACTURED, FRACTURES SL SLICI, SLIT, SLIT						2.0			6. 25		0.05	0.005	i	CPT	~ CO	NE PENE	TRATIO	N TEST		NP - NO	IN PLAS	STIC					HT.
SOIL MOISTURE SCALE (ATTEMBERS LIMITS) GATTERBERS LIMITS GATTERBERS LIMITS) GATTERBERS LIMITS S. SAND, SANDY S. SANDY S. SAND, SANDY S. SAND, SANDY S. SANDY S. SAND, SANDY S. SANDY S. SANDY		S	OIL	MOIST	JRE -	- co	RREI	LAT	ŌΝ	OF	TERMS			DMT	- DI	LATOMET							ST			BREYL	ATIONS
ATTEMBERG LIMITS) DESCRIPTION ATTEMBERG LIMITS) DESCRIPTION - SATURATED - USUALLY LIQUID; VERY MET, VERY MET, MET, MET, VERY MET, MET, MET, VERY MET, MET, MET, MET, MET, MET, MET, MET,		MOISTURE	SCALE		FIEL	O MOI:	STURE					STURE DES	CRIPTION				ENEIRA	I LUN I								POON	
PLASTIC LIMIT PLASTIC LIMIT OM OPTIMUM MOISTURE SL SHRINKAGE LIMIT OM OPTIMUM MOISTURE OME OPTIMUM MOISTURE OMBILE B- CLAY BITS OME ONTONIOUS FLIGHT AUGER CORE SIZE: MANUAL OUTDINGT COLOR: MANUAL OUTDINGT TOLOS: MANUAL OUTDINGT MANUAL OME-45C HAND FACED FINGER BITS W OME-45C MANUAL OUTDINGT OME-45C MANUAL	CATTE	ABERG LIM	ITS)		DES	CRIPI	ION	L																		TUBE	
LL LIQUID LIMIT PLASTIC PLASTIC LIMIT OM OPTIMUM MOISTURE SL SHRINKAGE LIMIT OM OPTIMUM MOISTURE SL SHRINKAGE LIMIT OM OPTIMUM MOISTURE - MOIST - (M) SOLID; AT OR NEAR OPTIMUM MOISTURE SL SHRINKAGE LIMIT - OMY - (D) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE - OMY - (D) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE - OMY - (D) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE - OMY - (D) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE - OMY - (D) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE - OM OPTIMUM MOISTURE - ON OPTIMUM MOISTURE - OR OPTIMUM MOISTURE - MISTOR CUMPMENT USED ON SUBJECT PROJECT - OR OPTIMUM MOISTURE - OR OPTIMUM MOISTURE - OR OPTIMUM MOISTURE - MISTOR CUMPMENT USED ON SUBJECT PROJECT - OR OPTIMUM MOISTURE - OR OPTIMUM							EO -											TURES		TCR - F	#ICONE	REFUSAL		AT - F	RECOMP		
PLASTIC LIMIT OH OPTIMUM MOISTURE SHRINGGE LIMIT OH OPTIMUM MOISTURE OH OPTIMUM MOISTURE OH OPTIMUM MOISTURE OH OPTIMUM MOISTURE OH OH OPTIMUM MOISTURE OH OH OPTIMUM MOISTURE OH OH OPTIMUM MOISTURE OH O		T LIGHT	LIMI	т_					, . ,								ITS					CONTENT		CBR ~			BEARING
PLASTIC LIMIT OM OPTIMUM MOISTURE SHRINKAGE LIMIT OM OPTIMUM MOISTURE SHRINKAGE LIMIT ONTY - (D) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE PLASTICITY PLASTICITY PLASTICITY PLASTICITY PLASTICITY PLASTICITY PLASTICITY ONLOW P					_	WET -	(W)						ם		, ito		FO	UIPM				SUBJEC	T PROJ	ECT	-		
OM OPTIMUM MOISTURE SL SHRINKAGE LIMIT - ORY - (D) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE - ORY - (D) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE - ORY - (D) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE - ORY - (D) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE - ORY - (D) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE - ORY - (D) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE - ORY - (D) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE - ORY - (D) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE - ORY - (D) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE - ORY - (D) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE - ORY - (D) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE - ORY - (D) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE - ORY - (D) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE - ORY - (D) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE - ORY - (D) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE - MOBILE B CLAY BITS - W CONTINUOUS FLIGHT AUGER - B - W CONTINUOUS FLIGHT AUGER - W HOLLOW AUGERS - B - W HOLLOW AUGERS - W HOLLOW AU		PLAST	IC LD	4IT _					Alli	HIN UP	TIMUM MUI:	STUME		\vdash											YPEı		
- ORY - (0) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE - ORY - (0) ATTAIN OPTIMUM MOISTURE - OR - SIZE: - OR -	DM	OPTEMU	M MCI	STURE	- Ņ	OIST	- (M)		SO	LCC; AT	OR NEAR	OPTIMUM I	MOISTURE	DRILL 					_	•			1				MANUAL
PLASTICITY PLASTICITY INDEX (PD DRY STRENGTH NONPLASTIC OF 5 VERY LOW LOW PLASTICITY MED. PLASTICITY MED. PLASTICITY MED. PLASTICITY MED. PLASTICITY MED. PLASTICITY MED. PLASTICITY DESCRIPTIONS MAY INCLUDE COLOR OR COLOR COMBINATIONS (TAN, RED, YELLOW-BROWN, BLUE-GRAY). MODIFIERS SUCH AS LIGHT, DARK, STREAKED, ETC. ARE USED TO DESCRIBE APPEARANCE. MED. MED. MED. MED. MED. MED. MED. MED.	SL	+ SHRINE	KAGE L	.IMIT _		DEN.	405						0 .					=	<u> </u>			IGHT AUGER	cor	RE SIZE			
PLASTICITY INDEX (PD DRY STRENGTH NONPLASTIC O-5 VERY LOW LOW PLASTICITY O-15 SLIGHT MED. PLASTICITY 16-25 MEDIUM HIGH PLASTICITY 26 OR MORE HIGH DESCRIPTIONS MAY INCLUDE COLOR OR COLOR COMBINATIONS (TAN, RED, YELLOW-BROWN, BLUE-GRAY). MODIFIERS SUCH AS LIGHT, DARK, STREAKED, ETC. ARE USED TO DESCRIBE APPEARANCE. TUNGCARBIDE INSERTS X CASING W/ ADVANCER HAND TOOLS TRICONE STEEL TEETH POST HOLE DIGGER HAND ADGER X Deldrich D-50 X CORE BIT VANE SHEAR TEST		<u></u>						TV	ATT	AIN OP	TIMUM MOE	STURE		∐	BK-2	1			=					; ┬	_		
NONPLASTIC NONPLASTICITY NONPLASTICITY NONPLASTICITY NONLASTICITY N											Dev era	ENGTH.		┧╚	CME-	45C			= _				LX]-⋈┼			
LOW PLASTICITY 16-25 MED. PORTABLE HOIST TRICONE STEEL TEETH TRICONE SOUNDING ROD VANCER HAND TOOLS TRICONE STEEL TEETH HOT TOOLS TRICONE SOUNDING ROD VANCER WAND TOOLS CORE BIT CORE BIT VANCER WAND TOOLS VANCER WAND TOOLS CORE BIT VANCER WAND TOOLS WAND TOOLS WAS HARD TOOLS VANCER WAND TOOLS WAND TO	NONPLASTE	2			rLAS1			K (IFI)						X	CME-	55Ø			=]# _			
HIGH PLASTICITY 26 OR MORE HIGH COLOR DESCRIPTIONS MAY INCLUDE COLOR OR COLOR COMBINATIONS (TAN, RED, YELLOW-BROWN, BLUE-GRAY). MODIFIERS SUCH AS LIGHT, DARK, STREAKED, ETC. ARE USED TO DESCRIBE APPEARANCE. HIGH PUTIBLE AUIST TRICORE TRICORE TRICORE TRICORE TUNGCARB. X Deldrich D-50 VANE SHEAR TEST VANE SHEAR TEST	LOW PLAST	TELTY				6-15	5				SLIG	нГ							=		_			- 1			
COLOR DESCRIPTIONS MAY INCLUDE COLOR OR COLOR COMBINATIONS (TAN, RED, YELLOW-BROWN, BLUE-GRAY). MODIFIERS SUCH AS LIGHT, DARK, STREAKED, ETC. ARE USED TO DESCRIBE APPEARANCE. X Deldrich D-50 X CORE BIT VANE SHEAR TEST								E							PORT	TABLE HO	121	ļ	╛╙	ICONE		_		╡			R
DESCRIPTIONS MAY INCLUDE COLOR OR COLOR COMBINATIONS (TAN, RED, YELLOW-BROWN, BLUE-GRAY). MODIFIERS SUCH AS LIGHT, DANK, STREAKED, ETC. ARE USED TO DESCRIBE APPEARANCE.						C	<u>DLOR</u>	<u> </u>							Delo	drich	D-50	ا اِ	_	RICONE		TUNGCARE.		≒ ।			
MODIFIERS SUCH AS LIGHT, DARK, STREAKED, ETC. ARE USED TO DESCRIBE APPEARANCE.	DESCRIPTI	ONS MAY I	NCLUD	E COLOR	OR COL	OR CO	MBINA	TIONS	(TAN	RED, Y	YELLOW-BRO	WN, BLUE-	GRAY).					[<u>×</u> c	ORE BIT			 	5			
ED/(FD 08/27/08														\sqcup				[J _				. ⊨	i "	_ ant.A	, ical	
	L													Ь—											EVICED	09/23/	n•

PROJECT REFERENCE NO.	SHEET NO.
45354.1.13 (BD-5108L)	2A

NORTH CAROLINA DEPARTMENT OF TRANSPORTATION

DIVISION OF HIGHWAYS

GEOTECHNICAL ENGINEERING UNIT SOIL AND ROCK LEGEND, TERMS, SYMBOLS, AND ABBREVIATIONS

			ROCK D	DESCRIPTION		TERMS AND DEFINITIONS	
BOCK ! INF I	NDICATE	લ THFIFVE∖	AT WHICH NON-CO	IF TESTED, WOULD YIELD SPT DASTAL PLAIN MATERIAL WOUL	D YLELD SPI REFUSAL.	ALLUVIUM (ALLUV.) - SOILS THAT HAVE BEEN TRANSPORTED BY WATER.	
COT RECIICA	I IS PER	SETRATION BY	A SPIT SPOON	sampler equal to or less :	THAN 9.1 FOOT PER 69 BLOWS. OFTEN REPRESENTED BY A ZONE	AQUIFER - A WATER BEARING FORMATION OR STRATA. ARENACEOUS - APPLIED TO ROCKS THAT HAVE BEEN DERIVED FROM SAND OR THA	T CONTAIN SAND
OF WEATHER	ED ROCK		DIVIDEO AS FOLL			ARGILLACEOUS - APPLIED TO ALL ROCKS OR SUBSTANCES COMPOSED OF CLAY MIL	
WEATHERED	IINLS MI			AIN MATERIAL THAT WOULD YI	ELD SPT N VALUES > 199	OR HAVING A NOTABLE PROPORTION OF CLAY IN THEIR COMPOSITION, AS SHALE, S	LATE, ETC.
ROCK (WR)			BLOWS PER FOOT	IF TESTED.		ARTESIAN - GROUND WATER THAT IS UNDER SUFFICIENT PRESSURE TO RISE ABOV AT WHICH IT IS ENCOUNTERED. BUT WHICH DOES NOT NECESSARILY RISE TO OR A	ABOVE THE
CRYSTALLINE RDCK (CR)			WOULD YIELD SP GNEISS, GABBRO, S	GRAIN IGNEOUS AND METAMOR T REFUSAL IF TESTED, MOCK SCHIST, ETC.	TYPE INCLUDES GRANITE,	GROUND SURFACE. CALCAREOUS (CALC.) - SOILS THAT CONTAIN APPRECIABLE AMOUNTS OF CALCIUM (ÇARBONATE.
NON-CRYSTALLI ROCK (NCR)	INE		FINE TO COARSE SEDIMENTARY ROOT INCLUDES PHYLLI	GRAIN METAMORPHIC AND NON CK THAT WOULD YELD SPT RE ITE SLATE SANDSTONE FIG.	FUSAL IF TESTED. ROCK TYPE	COLLUYIUM - ROCK FRAGMENTS MIXED WITH SOIL DEPOSITED BY DRAVITY ON SLO OF SLOPE.	
COASTAL PLAIN SEDIMENTARY F	ROCK		COASTAL PLAIN S SPT REFUSAL. RO	SEDIMENTS CEMENTED INTO RO ICK TYPE INCLUDES LIMESTONE	CK, BUT MAY NOT YIELD E, SANDSTONE, CEMENTED	CORE RECOVERY (MEC.) - TOTAL LENGTH OF ALL MATERIAL RECOVERED IN THE CORE LENGTH OF CORE RUN AND EXPRESSED AS A PERCENTAGE.	BARREL DIVIDED BY TOTAL
(CP)			SHELL BEDS, ETC.	THERING		DIKE - A TABULAR BODY OF IGNEOUS ROCK THAT CUTS ACROSS THE STRUCTURE ROCKS OR CUTS MASSIVE ROCK.	OF ADJACENT
		ESH, CRYSTAL IF CRYSTALL		INTS MAY SHOW SLIGHT STAIN	ING. ROCK RINGS UNDER	OLP - THE ANGLE AT WHICH A STRATUM OR ANY PLANAR FEATURE IS INCLINED F	RON THE
VERY SLIGHT	ROCK GE	NERALLY FRE	SH. JOINTS STAINE	ED, SOME JOINTS MAY SHOW THE SHINE BRIGHTLY. ROCK RING	HIN CLAY COATINGS IF OPEN, IS UNDER HAMMER BLOWS IF	DIP DIRECTION OUP AZIMUTHO - THE DIRECTION OR BEARING OF THE HORIZONTAL THE LINE OF DIP, MEASURED CLOCKWISE FROM NORTH.	TRACE OF
SLICHT	OF A CR	YSTALLINE N	ature. Sh. joints staine	ED AND DISCOLORATION EXTEN	es into rock up to	FAULT - A FRACTURE OR FRACTURE ZONE ALONG WHICH THERE HAS BEEN DISPLA SIDES RELATIVE TO ONE ANOTHER PARALLEL TO THE FRACTURE.	CEMENT OF THE
(SLL)	1 INCH. I	OPEN JOINTS	MAY CONTAIN CLA AND DISCOLORED.	y, in granitoid rocks some Crystalline rocks ring und	OCCASIONAL FELDSPAR DER HAMMER BLOWS.	FISSILE - A PROPERTY OF SPLITTING ALONG CLOSELY SPACED PARALLEL PLANES	
MODERATE	SIGNIFIC	ANT PORTIONS	S OF ROCK SHOW	DISCOLORATION AND WEATHER! E DULL AND DISCOLORED, SOME	NG EFFECTS. IN	FLOAT - ROCK FRAGMENTS ON SURFACE NEAR THEIR ORIGINAL POSITION AND DIS	LODGED FROM
	DULL SO WITH FR	UND UNDER H ESH ROCK.	AMMER BLOWS AND	O SHOWS SIGNIFICANT LOSS OF	F STRENGTH AS COMPARED	FLOOD PLAIN (FP) - LAND BORDERING A STREAM, BUILT OF SEDIMENTS DEPOSITED THE STREAM.	BY
SEVERE	AND DISI	COLORED AND	A MAJORITY SHOW	OR STAINED. IN GRANITOID RO KAOLINIZATION, ROCK SHOWS GIST'S PICK, ROCK GIVES "CLU	SEVERE LOSS OF STRENGTH	FORMATION (FM.) - A MAPPABLE GEOLOGIC UNIT THAT CAN BE RECOGNIZED AND TITLE FIELD.	RACED IN
	<u>IF TEST</u>	EÒ. WOULD YIE	LO SPT REFUSAL			JOINT - FRACTURE IN ROCK ALONG WHICH NO APPRECIABLE MOVEMENT HAS OCCUP	RRED.
(SEV.)	IN STRE	NGTH TO STR	ONG SOIL, IN GRAI	i or stained rock fabric Cl Nitoid rocks all felospars Rock usually remain.	EAR AND EVIDENT BUT REDUCED ARE KAOLINIZED TO SOME	$\underline{\text{LEDGE}}$ - A SHELF-LIKE RIDGE OR PROJECTION OF ROCK WHOSE THICKNESS IS SMITS LATERAL EXTENT.	
	IF TEST	ED YTELOS S	PT N VALUES > 18	<u> 1886 - </u>		LENS - A BODY OF SOIL OR ROCK THAT THINS OUT IN ONE OR MORE DIRECTIONS MOTTLED (MOT.) - IRREGULARLY MARKED WITH SPOTS OF DIFFERENT COLORS, MOT	
VERY SEVERE	ALL ROC	K EXCEPT OU	WRTZ DISCOLORED	OR STAINED, ROCK FABRIC EL D SOIL STATUS, WITH ONLY FR	EMENTS ARE DISCERNIBLE BUT AGMENTS OF STRONG ROCK	SOILS USUALLY INDICATES POOR AFRATION AND LACK OF GOOD DRAINAGE.	
	REMAINI	NG. SAPROLITI	E IS AN EXAMPLE	DF ROCK WEATHERED TO A DE IC REMAIN. <i>IF TESTED YIEL</i>	CREE SUCH THAT ONLY MINOR	PERCHED WATER - WATER MAINTAINED ABOVE THE NORMAL GROUND WATER LEVEL INTERVENING IMPERVIOUS STRATUM.	BY THE PRESENCE OF AN
COMPLETE	ROCK RE	DUCED TO SO	IL. ROCK FABRIC I	NOT DISCERNIBLE, OR DISCERNI	IBLE ONLY IN SMALL AND	RESIDUAL (RES.) SOIL - SOIL FORMED IN PLACE BY THE WEATHERDING OF ROCK.	
		ED CONCENTR EXAMPLE,	ATIONS. CLIARTZ M	MAY BE PRESENT AS DIKES OR	STRINGERS. SAPROLITE IS	ROCK QUALITY DESIGNATION (RQD) - A MEASURE OF ROCK QUALITY DESCRIBED BY ROCK SEGMENTS EQUAL TO OR CREATER THAN 4 INCHES DIVIDED BY THE TOTAL	TOTAL LENGTH OF LENGTH OF COME RUN AND
			ROCK	HARDNESS		EXPRESSED AS A PERCENTAGE. SAPROLITE (SAP.) - RESIDUAL SOIL THAT RETAINS THE RELIC STRUCTURE OR FAIL	METO OF THE
VERY HARD			ed by Knife or : 's of the geolog	SHARP PICK. BREAKING OF HAN DIST'S PICK.	NO SPECIMENS REQUIRES	PARENT ROCK.	
HARD		SCRATCHED ACH HAND SP		CONLY WITH DIFFICULTY, HAR	D HAMMER BLOWS REQUIRED	<u>SILL</u> - AN INTRUSIVE BODY OF IGNEOUS ROCK OF APPROXIMATELY UNIFORM THIC RELATIVELY THEN COMPARED WITH ITS LATERAL EXTENT, THAT HAS BEEN EMPLAY TO THE BEDDING OR SCHISTOSITY OF THE INTRUDED ROCKS.	CED PARALLEL
MODERATELY HARD	EXCAVA	SCRATCHED TED BY HARD DERATE BLOWS	BLOW OF A GEOL	(, GOUGES OF GROOVES TO 0.2 LOGIST'S PICK, HAND SMECIMEN	RS INCHES DEEP CAN BE IS CAN BE DETACHED	SLICKENSIDE - POLISHED AND STRIATED SURFACE THAT RESULTS FROM FRICTION SLIP PLANE.	
MEQIUM HARD	CAN BE	CROOVED OR	GOUGED 0.05 INC IN SMALL CHUPS	CHES DEEP BY FIRM PRESSURE TO PEICES 1 INCH MAXIMUM SI	OF KNIFE OR PICK POINT. ZE BY HARD BLOWS OF THE	STANDARD PENETRATION TEST (PENETRATION RESISTANCE) (SPT) - NUMBER OF BLC a 140 LB. HAMMER FALLING 30 DOCHES REQUIRED TO PRODUCE A PENETRATION O A 2 INCH OUTSIDE DIAMETER SPLIT SPOON SAMPLER, SPT REFUSAL IS PENETRA' THAN BLI FOOT PER 60 BLOWS.	F 1 FOOT INTO SOIL WITH
SOFT	FROM 6	HIPS TO SEV	ERAL INCHES IN S	BY KNIFE OR PICK, CAN BE E) SIZE BY MODERATE BLOWS OF	KCAVATED IN FRAGMENTS A PICK POINT, SMALL, THIN	STRATA CORE RECOVERY (SREC.) - TOTAL LENGTH OF STRATA MATERIAL RECOVERED OF STRATUM AND EXPRESSED AS A PERCENTAGE.	DIVIDED BY TOTAL LENGTH
VERY SOFT	ÇAN BE	CARVED WITH	KEN DY FINGER 21 H KNIFE, CAN BE ESS CAN BE BROKE	EXCAVATED READILY WITH POS EN BY FINGER PRESSURE. CAN	NT OF PICK. PIECES 1 INCH BE SCRATCHED READILY BY	STRATA ROCK DUALITY DESIGNATION (SROD) - A MEASURE OF ROCK DUALITY DESCRIB- TOTAL LENGTH OF ROCK SEGMENTS WITHIN A STRATUM EQUAL TO OR GREATER THAN TOTAL LENGTH OF STRATA AND EXPRESSED AS A PERCENTAGE.	ED BY 4 Inches Divided by the
FD	FINGER	NAIL. RE SPAC	ING	BEC	DDING	TOPSOIL (TS.) - SURFACE SOILS USUALLY CONTAINING ORGANIC MATTER.	
TERM			ACING	TERM	THICKNESS	BENCH MARK: BL-102	
VERY WIDE	:	MORE TI	HAN 10 FEET	VERY THICKLY BEDOED THICKLY BEDOED	L5 - 4 FEET	N 675i34.9	TION: 478,96 FT.
WIDE MODERATEL	Y CLOSE	3 TO 19 1 TO 3 I	FEET	THINLY BEDDED VERY THINLY BEDDED	0.16 - 1.5 FEET 0.03 - 0.16 FEET	E 11310.010	10.14 (10.20 11
CLOSE VERY CLOS	SE.	9.16 TO LESS TH	1 FEET HAN BLIS FEET	THICKLY LAMINATED THINLY LAMINATED	0.008 - 0.03 FEET < 0.008 FEET	NOTES: ARRA borings originally drilled by Summit	
				URATION		Consulting under TIP M-0423 in March 2010.	
FOR SEDIMENTA	ARY ROCK	CS, INDURATIO		ING OF THE MATERIAL BY CEN		FIAD = Filled in After Drilling	
FRI	ABLE		RUBBING GENTLE I	WITH FINGER FREES NUMEROUS BLOW BY HAMMER DISINTEGRAT	S GRAINS: TES SAMPLE,		
м00	ERATELY	INDURATED		AN DE SEPARATED FROM SAM! EASILY WHEN HIT WITH HAMME			
INDL	JRATED			ARE DIFFICULT TO SEPARATE TO TO BREAK WITH HAMMER.	WITH STEEL PROBE:		
EXT	REMELY	DIDURATED		AMMER BLOWS REQUIRED TO B BREAKS ACROSS GRAINS.	REAK SAMPLE)		
						<u> </u>	EVISED 09/23/09

TIP BD-5108L GEOLOGIST Stickney, J. K. COUNTY Randolph WBS 45354.1.13 SITE DESCRIPTION Bridge No. 215 on SR 2903 (Osborn Mill Road) over Bachelor Creek GROUND WTR (ft) OFFSET 9ft LT ALIGNMENT -L-0 HR. Dry STATION 22+96 **BORING NO. EB1-A EASTING** 1,794,420 24 HR. Dry **TOTAL DEPTH 6.6 ft** NORTHING 6,751,989 COLLAR ELEV. 472.1 ft HAMMER TYPE Automatic DRILL RIG/HAMMER EFF./DATE HFO0072 CME-550 89% 09/02/2009 DRILL METHOD H.S. Augers COMP. DATE 05/20/11 SURFACE WATER DEPTH N/A DRILLER Smith, M. L. **START DATE: 05/20/11** SAMP **BLOW COUNT BLOWS PER FOOT** DEPTH SOIL AND ROCK DESCRIPTION **ELEV ELEV** 100 25 50 NO. (ft) (ft) 0.5ft 0.5ft 0.5ft MO G ELEV. (ft) DEPTH (ft) (ft) 475 GROUND SURFACE 472.1 ALLUVIAL Tan to orange, loose, clayey SILTY SAND (A-2-4) 470 RESIDUAL 467 8 Tan-brown to white, loose to medium dense SILTY SAND (A-2-4) 466.8 69/0.3 100/0.8 **- 4**65.5 WEATHERED ROCK WEATHERED ROCK (felsic metavolcanic) Boring Terminated by Auger Refusal at Elevation 465.5 ft on Crystalline Rock (felsic metavolcanic) **NCDOT BORE SINGLE**

WBS 45354.1.13 **TIP BD-5108L** COUNTY Randolph GEOLOGIST Stickney, J. K. GROUND WTR (ft) SITE DESCRIPTION Bridge No. 215 on SR 2903 (Osborn Mill Road) over Bachelor Creek **STATION 23+20** OFFSET 8 ft LT ALIGNMENT -L-0 HR. N/A **BORING NO. B1-A** TOTAL DEPTH 22.5 ft **NORTHING 675,178 EASTING 1,794,432** 24 HR. 5.4 FIAD COLLAR ELEV. 471.1 ft DRILL METHOD NW Casing W/SPT & Core HAMMER TYPE Automatic DRILL RIG/HAMMER EFF./DATE HFO0072 CME-550 89% 09/02/2009 DRILLER Smith, M. L. **START DATE: 05/23/11** COMP. DATE 05/23/11 SURFACE WATER DEPTH N/A DRIVE DEPTH SAMP **BLOWS PER FOOT BLOW COUNT** ELEV Ō SOIL AND ROCK DESCRIPTION **ELEV** (ft) (ft) 0.5ft 0.5ft 0.5ft 25 100 NO. MOI ELEV. (ft) (ft) DEPTH (ft) 475 GROUND SURFACE 471.1 ALLUVIAL 470 Tan-brown, loose, clayey, SILTY SAND (A-2-4)466.7 18 ∇ RESIDUAL 465.1 465 Tan-brown, SILTY fine Sand (A-2-4) 463.6 WEATHERED ROCK WEATHERED ROCK (felsic metavolcanic) CRYSTALLINE ROCK CRYSTALLINE ROCK (felsic metavolcanic) 460 RS-1 455 20.0 CRYSTALLINE ROCK (felsic metavolcanic) 450 Boring Terminated at Elevation 448.6 ft in Crystalline Rock (felsic metavolcanic) NCDOT BORE SINGLE 076&000_GEO_BRDG0215_ARRA.GPJ NC_DOT.GDT

WBS 45354.1.13	<u>. </u>		TIP	BD-51	08L	С	OUNT	YR	indolph GEOLOGIST Stickney, J. K.	
SITE DESCRIPTI	ON Brid	ge No. 2'	15 on (SR 29	03 (Osbo	rn Mill	Road	l) ove	Bachelor Creek GROL	IND WTR (
ORING NO. B1	-A		STA	rion	23+20			OF	SET 8 ft LT ALIGNMENT -L- 0 HR.	. N//
COLLAR ELEV.	471.1 ft		TOT	AL DE	PTH 22.	5 ft		NO	THING 675,178 EASTING 1,794,432 24 HR.	5.4 FIAI
RILL RIG/HAMMER	EFF/DA	TE HFO0	072 CN	1E-550	89% 09/0	2/2009			DRILL METHOD NW Casing W/SPT & Core HAMMER TYPE	Automatic
ORILLER Smith,	M. L.		STAI	RT DA	TE 05/2	3/11		СО	IP. DATE 05/23/11 SURFACE WATER DEPTH N/A	
ORE SIZE N/A			TOTA	AL RU	N 15.0 f	t				
LEV RUN ELEV DEP- (ft) (ft)		DRILL RATE (Min/ft)	REC. (ft)	RQD (ft)	SAMP. NO.	STR REC. (ft)	RQD (ft)	L O G	DESCRIPTION AND REMARKS ELEV. (ft)	DE P TH
63.6									Begin Coring @ 7.5 ft	
463.6 + 7.5 461.6 + 9.5 460 456.6 + 14.5	5.0	2:30/1.0 2:20/1.0 2:00/1.0 2:10/1.0 1:55/1.0 2:00/1.0 1:57/1.0	(2.0) 100% (4.7) 94%	(0.9) 45% (3.0) 60%	RS-1	(11.9) 95%	(6.7) 5 4%		Very slightly weathered to fresh, medium hard to hard, close to mo- close fractured, weakly foliated, felsic metavolcanic	7 derately
451.6 + 19.5	5.0	2:00/1.0 1:51/1.0 1:53/1.0 2:10/1.0 2:00/1.0	(4.7) 94%	(2.3) 46%				1111		
150	3.0	l 2:30/1.0 l	(3.0) 100%	(0.0) 0%		(2.5)	(0.0)		451.1 Moderately weathered, soft to medium hard, close fractured, foliate	d, felsic
448,6 22.5	5	2:15/1.0	100%	U 70		100%	0%	شوم	Moderately weathered, soft to medium hard, close fractured, foliate metavolcanic Boring Terminated at Elevation 448.6 ft in Crystalline Rock (fe	sic 22

CORE PHOTOGRAPHS

* B1-A **BOXES 1 & 2: 7.5 - 22.5 FEET**

WBS	45354.	1.13			TII	• B	D-5	5108	3L		С	OUI	NTY	R	ando	olph				GEOLOGIST Stickney, J	. K.		
SITE	DESCR	IPTION	N Brid	ge No	. 215 c	n Si	₹ 2	903	(Osl	born	Mil	l Ro	ad)	ove	r Ba	che	lor Cre	ek				GROUND	WTR (ft)
BOR	ING NO.	B1-B			ST	ATI	ON	23	+26					OFF	SE	T 3	ft RT			ALIGNMENT -L-		0 HR.	Caved
COLI	LAR ELE	EV. 46	7.8 ft		TC	TAI	_ D	EP1	H 7	7.0 fl	t			NOF	RTH	ING	675,1	167		EASTING 1,794,427		24 HR.	Caved
DRILL	. RIG/HAN	IMER EI	FF/DA	TE HF	00072	CME	-55(89	% 09	/02/2	2009						DRILL I	METHO	D S	olid Augers	AMME	R TYPE A	utomatic
DRIL	LER Sr		. L.		ST	AR	ΓD	ATE	05	/20/	11			CO	MP.	DA.	TE 05/	-		SURFACE WATER DEPT	H N/	4	
ELEV (ft)	DRIVE ELEV	DEPTH (ft)		W COL		0		2	BLO 5	OWS	50 50	R FC		75	1	00	SAMP.	/	0	SOIL AND ROCE	DES	RIPTION	
(119	(ft)	(11)	U.5π	0.5ft	0.5ft	-					<u> </u>			<u> </u>			140.	/ MO	l G	ELEV. (ft)			DEPTH (ft)
1																							
470		-																			SURF	ACE	0.0
	, ‡					+-								-		-				ALLU	/IAL		
465	, †	-				Ŀ			• •	•	+	· ·			• •	_				- Gray-brown, medius (A-7	n sun, -5)	SILITULAT	4.0
	†	-				:	: :	:						-		-			99	Brown, medium der (A-1-b) with gra			7 - 4.5
	1					<u> </u>	<u>. </u>	<u>. </u>				· ·	· ·	<u> </u>	<u> </u>		-		a i	460.8 WEATHER WEATHERED ROCK	ED RO	OCK	
	, 7	-		!	1															Boring Terminated b	y Aug	er Refusal a	t
]				<u> </u>														1	Elevation 460.8 ft on 0 metavo			SIC
	,]	•			-															<u> </u>			
]	•																					
	<u> </u>	-																		- 			
		•																		-			
		•																		- -			
	, †	<u>-</u>																		- -			
	†	•																1		-			
		- -																		-			
		•																		-			
		• •																		-			
		- -															ŀ			-			
		•																		-			
	-	.																		<u> </u>			
	-	•																		_			
]	-																		-			
	.]	-																		<u>-</u>			
]	_																	ŀ	-			
2	-	-																ŀ		-			
2		-																ŀ	ŀ	- -			
2		-									I									-			
5		-			,															- -			
	-	-																		- -			
<u> </u>	-	-																		- -			
700		-																		- -			
		-																		-			
6		-																		<u>-</u>			
		-															1			-			
3	_ੑ ⋠	-															1			 r			
		- -																		,			
1		- -																		-			
3		- -																		<u>-</u>			
3	i 1	-																		ţ			

$\overline{}$																	+
	45354						BD-510				Y Rando					GEOLOGIST Skeen, M.	ļ Fi
1				ge No			SR 290		n Mill I	Road)				ek			GROUND WTR (ft)
BOR	NG NO	ARR	A-1		-		TION N				OFFSE					ALIGNMENT -L-	O HR. N/A
COL	AR EL	EV. 47	8.4 ft		TO)T	AL DEP	TH 17.6	i ft		NORTH	ING	675,0	77		EASTING 1,794,451	24 HR. 12.0
DRILL	RIG/HAM	AMER E	FF./DA	TE Di	edrich E)-5(i0 			,			DRILL N	METHO	D N	W Casing W/SPT & Core HAMM	ER TYPE Automatic
DRIL	LER D	uggins	W.T.		S.	ľΑ	RT DAT	E 03/16	i/10		COMP.	DA.	TE 03/	17/10		SURFACE WATER DEPTH NA	Ä
ELEV (ft)	CLEV	DEPTH (ft)	ļ	0.5ft		c	0	BLOW 25	S PER 50			00	SAMP.	17	0	SOIL AND ROCK DES	1
DRIL	LER D	uggins DEPTH	W.T.	0.5ft	s	ra	ART DAT	BLOW				00 00 0.1	TE 03/	17/10	L O	SURFACE WATER DEPTH N	ACE 0.0 KMENT Stiff fine sandy 4) OCK Anic Rock) ROCK Anic Rock 17.6 Action 480.5 ft in check The bit to a depth The between 8.3 Stiff eet below the inface. Infonite added as
																	•

SITE DESCRIPTION Bridge No. 215 on SR 2903 (Osborn Mill Road) over Bachelor Creek GROUND WTI				KEE	_						Large page 2	
BORING NO. ARRA-1					1							ODOLIND HED /
COLLAR ELEV. 478.4 ft	-			dge No. 2				orn Mil	Road	r		
DRILL RIGHAMMER EFF.JDATE Diedrich D-50 DRILL METHOD NW Casing WSPT 8 Core HAMMER TYPE Automotic DRILLER Duggins, WT. START DATE 03/16/10 COMP. DATE 03/17/10 SURFACE WATER DEPTH N/A					+					-		
DRILLER Duggins W.T. START DATE 03/16/10 COMP. DATE 03/17/10 SURFACE WATER DEPTH N/A								.6 11		NO		
CORE SIZE NO	ļ				_		TE 03/1	16/10	•	CO		
ELEV (III) DEPTH RUN (III) DEPTH RUN (IIII) DEPTH RUN (IIIII) DEPTH RUN (IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII			S, VV. I.	-	 				•		WF. DATE USTITIO SURFACE WATER BEFINING	<u> </u>
ELEV (M) (M) (N) (M) (N) (N) (N) (N) (N) (N) (N) (N) (N) (N		DUN		DRILL	R	UN	T	STF	RATA	L		
465.8 12.8 5.58810 (2.7)		ELEV DEL		RATE	REC. (ft)	RQD (ft)		REC. (ft)	RQD (ft)	1 O I	ELEV. (ft)	DEPTH
465.8 1.2.6 5.21/1.0 5.0 3.12/0.3 (4.5) (2.5) 6.02/1.0 9.0% 50% 8.21/0.0 1.7.6 1.7.08/1.0 1.2.2 1.2.	447001	470.1 8.3	4.3			(0.7)		\vdash			470.1 CRYSTALLINE ROCK	
8 (02): 10 (05): 50% (05):	445	465.8 12.6		7:04/1.0 5:21/1.0								
480.8 1.7.6 17.08/1.0 27.27/1.0 8 Boring Terminated at Elevation 460.8 ft in Gray Metavolcanic Rock 1.2 Advanced 2-15/16 tri-cone bit to a depth of 5.3 feet 2.1 Advanced a NO core barrel between 6.3 and 17.6 feet 2.2 Set NW casing to 8.0 feet below the existing ground surface. 3) Used creek water with bentonite added as drilling fluid.	405	†	5.0	6:02/1.0 8:22/1.0	90%	(2.5) 50%					Quartz seams between 8,3 to 9,8 and 12,6 to 12	2.9
1) Advanced 2-15/16" tri-cone bit to a depth of 8.3 feet. 2) Advanced a NG core barrel between 8.3 and 17/6 feet 2.2 Set Nu sergion to 8.1 feet 2.3 set Nu sergion to 8.1 feet 3.3 feet. 2) Set Nu sergion to 8.1 feet 3.3 feet. 3) Used creek water with bentonite added as drilling fluid.		460.8 17.6		7;08/1.0					<u> </u>		. 460.8 Roying Terminated at Elevation 460.8 ft in Gray Metayol	canic Rock
											1) Advanced 2-15/16" tri-cone bit to a depth of 5.3 2) Advanced a NQ core barrel between 8.3 and 17 2) Set NW casing to 8.0 feet below the existing ground	feet. 6 feet 1 surface.

CORE PHOTOGRAPHS

ARRA-1

BOXES 1 & 2: 8.3 - 17.6 FEET

WBS	45354	.1.13			TII	В	D-5108	L	COUNT	Y Randol	ph				GEOLOGIST Skeen, M			
SITE	DESCR	IPTIOI	l Brid	ge No	. 215 c	n SF	R 2903	(Osborn	Mill Road	l) over Bac	helor	Cree	ek					D WTR (ft)
BOR	ING NO	ARR	A- 2		SI	ATI	ON N/	Α		OFFSET	N/A	١			ALIGNMENT -L-		0 HR.	N/A
COL	LAR EL	EV. 47	8.9 ft		TC	TAL	_ DEPT	H 10.61	ft 	NORTHI					EASTING 1,794,464		24 HR.	FIAD
	. RIG/HAI			TE Die						1 "			METHO	D M			1	Automatic
DRIL	LER D	uggins,				ARI	DATE	03/17/		COMP.				1 1 T	SURFACE WATER DEP	TH N/A	<u> </u>	
ELEV (ft)	DRIVE ELEV (ft)	DEPTH (ft)	0.5ft	0.5ft	JNT 0.5ft	0	2		PER FOO 50	T 75 10		AMP. NO.	MOI	ь О G	SOIL AND ROC	K DESC	RIPTION	DEPTH (ff)
480	476 1	2.8				 	·	- · · · ·							478.9 GROUND ROADWAY E Red and brown me	MBANK edium st	MENT iff fine san	0.0 dy
475	471.1 469.7 468.3	78 - 92	55 100/0.3 60/0	45/0.2	3	1	7			- 100/0 - 100/0	3 ₽		D No Rec No Rec		471.9 WEATHE (Tan to gray Me 468.3 Boring Terminated w Elevation 468.3 ft c	RED RO	OCK nic Rock)	7.0 10.6 al at nic
													Rec		1) Advanced 2-15/16 of 10 2) Set HW casing greexisting greexisting grees 3) Used creek water	ock 5" tri-con .6 feet, to 3,5 fe ound sur	e bit to a d et below ti	lepth he

COUNTY Randolph GEOLOGIST Skeen, M. WBS 45354.1.13 **TIP BD-5108L** SITE DESCRIPTION Bridge No. 215 on SR 2903 (Osborn Mill Road) over Bachelor Creek GROUND WTR (ft) STATION N/A OFFSET N/A ALIGNMENT -L-0 HR. N/A **BORING NO. ARRA-4** TOTAL DEPTH 5.9 ft **NORTHING 675,165 EASTING** 1,794,381 24 HR. 1.0 COLLAR ELEV. 478.5 ft DRILL METHOD NW Casing W/SPT & Core **HAMMER TYPE** Automatic DRILL RIG/HAMMER EFF./DATE Diedrich D-50 **COMP. DATE 03/17/10** DRILLER Duggins, W.T. **START DATE: 03/17/10** SURFACE WATER DEPTH N/A DRIVE **BLOWS PER FOOT** \$AMP **BLOW COUNT** DEPTH ELEV SOIL AND ROCK DESCRIPTION 0 ELEV (ft) 100 25 0.5ft 0.5ft 0.5ft MOI G DEPTH (ft) (ft) ELEV. (ft) 480 **GROUND SURFACE** ROADWAY EMBANKMENT 477.6 0.9 -Ño .60/0 Red medium stiff fine sandy silty CLAY 60/0 Rec (A-7-5)475 CRYSTALLINE ROCK
Tan to gray Metavolcanic Rock Boring Terminated at Elevation 472.6 ft in Gray Metavolcanic Rock 1) Advanced 2-15/16" tri-cone bit to a depth of 0.9 feet. 2) Advanced a NQ core barrel between 0.9 and 5.9 feet 3) Used creek water with bentonite added as drilling fluid. NCDOT BORE SINGLE 076&000 GEO BRDG0215 ARRA.GPJ NC DOT.GDT

	45354.1.1				BD-51					dolph GEOLOGIST Skeen, M.		
SITE	DESCRIPT	ION Br	dge No. 2	15 on 9	SR 29	03 (Osbo	rn Mil	Road) ove	Bachelor Creek	GROUND	WTR (
BORII	NG NO. A	RRA-4		STA	TION	N/A			OF	ET N/A ALIGNMENT -L-	0 HR.	N/A
COLL	AR ELEV.	478.5 f	t	TOT	AL DE	PTH 5.9	ft ft		NO	THING 675,165 EASTING 1,794,381	24 HR.	1.
RiLL	RIG/HAMME	R EFF./D	ATE Diedri	ch D-50)					DRILL METHOD NW Casing W/SPT & Core HAM	MER TYPE AL	tomatic
RILL	ER Dugg	ins, W.T		STAI	RT DA	TE 03/1	7/10		СО	P. DATE 03/17/10 SURFACE WATER DEPTH	I/Ą	
ORE	SIZE NO	!		TOTA	AL RU	N 5.0 ft	• • •			-		
LEV (ft)	RUN DEF			REC.	JN RQD (ft)	SAMP. NO.	REC. (ft)	RATA RQD (ft)	L O G	DESCRIPTION AND REMARKS		DEPTH
77.6										Begin Coring @ 0.9 ft		
\$ 75	477.6 = 0.		12:02/1.0 9:31/1.0 14:02/1.0 13:59/1.0	70%	(2.3) 46%			,		77.6 CRYSTALLINE ROCK Tan to gray, fresh, very hard, moderately to closely sp Metavolcanic Rock	aced fractured,	
	472.6 5.	9	13:50/1.0		ſ					Boring Terminated at Elevation 472.6 ft in Gray Meta 1) Advanced 2-15/16" tri-cone bit to a depth of 2) Advanced a NQ core barrel between 0.9 and 3) Used creek water with bentonite added as dri).9 feet. 5.9 feet	

CORE PHOTOGRAPHS

ARRA-4

BOXES 1: 80.9 - 5.9 FEET

FEET

							ING UNIT LOG (EN	ici is	·LN		SHEET 17 OF 19
PROJECT NUMBER		64.1.13		BD-5108		IEK	co Randol		GE:	° C.M. Whalen, Jr.	7
	Bridge N	o. 215 on	SR 29	03 over l	Bache	lor Cree	·	<u> </u>			
BORING NUMBER	SR-	1	STA	22+63			OFFSET	CL FT	ALI	GN- NT -L-	1 .
ELEVATION	4	66.5 FT	TOTAL DEPTH		5.5	FT	NORTH 675	,138	EAS	1,794,450]
DRILL METHOD		ge Rod	COMP				Thursday,		i	CMW]
STARY DATE	06/01/1		DATE	06/0			SURFACE WTR DEPTH	n/a	FT DEF	ROCK 5.5 FT	
DEPTH (ft)		COUNT D.5 R TOTAL	0	BLOWS P	ER FOO	75 100	SAMPLE NO. & INTERVAL	моі	ORIGIN	SOIL & I SOIL or ROCK NAME (w/ color, dec	ROCK DESCRIPTION nsity/consistency, texture, plasticity, organics, other)
_								_			
, 🗦	0 0	9 0						_	Alluv.	(0,0-3.0) Allu	1, tan-brown, loose, Ity sand (A-2-4)
`∃	00	> 0] =		Clayey, 57	Ity sand (A-2-4)
			a					=			
2 🕇								=			
•]	4 4	8	1 2								-
3 🕇									-R\$5-	(3.0-50) Residu	(A-2-4) with grand
4	5 10	15		.5			•	_		silty sand	(A-2-4) with grave
4 -								-			
+	14 14	28		, bg				-			
S =				0 , ,			_	-			
5.5	_REF€	555				AL A				Bridge rod re	-fus-1 @ 5.5'(461.00)
7									CR	on constalling	:fus_1 @ 5.5'(461.001 e rock ic meta-volunic)
1									<u> </u>	, <u>(</u> tels	c meta · Volcaic)
+								=			
主					+++						
]			
1											
<u></u>											
+								-			
+											
1								\exists			
1											
1]			
\pm											
+						++++		1			
\exists								·]			
1								7			-
1								1			
=								=			
+								+ +	<u> </u>		
1								\exists			-
1								4			
	(place a min	ing Q to the	1 (3.11
OTES _								— I	NOTES	IRE B. Worley	DATE 6.2.11
									¥	Red-line from or	ig handwritten field
						·		<u> </u>	RED LINE	notes.	
								[<u> </u>	
ECK TO D	ATUM DISTA	NCE		FT							Enr. CEII 00% - 15-11-10101000
											Form GEU-005e Revised 2/6/2007

									ING UN LOG		GI IS	H)			· · · · · · · · · · · · · · · · · · ·	SHE	ET18OF19	9
PROJECT NUMBER	4:	5354.1			3D-510		<u>' / .</u>	<u>/\ </u>		ndoipi		'''	(GEO	C.M. Whalen, Jr.			
SITE DESC	Bridge	No. 2	15 on S	SR 290	03 ove	r Ba	chelo	r Cree	k			•	1		,			
BORING NUMBER		R-2		STA	22+83	3			OFFSET	. 4	CL FT			ALIGN- MENT	-L-			
ELEVATION		473.4		TOTAL DEPTH			5.5	FT	NORTH	6,75	1,321			EAST	1,794,461			
DRILL METHOD START		ridge R	od	COMP					SURFACE					DEPTH	CIVIVV			
DEPTH	06/0	1/11 LOW COU	INIT	DATE	06/ BLOW	01/1			WTR DEPTH		n/a	F		O ROC	CK D.D FT		<u> </u>	
(ft)	0.5 ft	0.5 ft	TOTAL	0	25	50 50	75	100			MOI		RIGIN	_	SOIL & ROCK NAME (w/ color, dens	OCK DESCRIP ty/consistency, tex	IION dure, plasticity, organics, other))
7			ļ <u>-</u>									/	t∥u	U		 	<u> </u>	
, -			0) j				1-1-1		ı]				(00-4.0) Allw., Silty sav	Down,	0052	
'	0		•	<u>h</u>							+				<u> </u>	a (17-	*-t)	
<u>,</u> =	0	0	0	┇┼┼┼			++											
ユヨ											\exists							
	 		ļ							İ	_							
3 =	0	0	0								3				·		1	
,, =	4-	4	8	72							1				 -		<u> </u>	
† <u>+</u>		-1	<u> </u>	9			##				-	RE	5		14.5-5.5) Res	Just.	dense.	
\exists	Ş	a(``	4/						_ '6.			(4.0-5.5) Resi Silty 540	11/1-2	4)	
5 🗍									acr		4				·			
3.5								1	ref		#	4	,	#	0 (0)	0		
7	:									Ì	7	4			Bridge Rod r 467, 9' (5.5 crystalline R	etasul	(E) elev,	٠
#										ŀ	#			_	crystalling in	xk/f	le neterel	}
•											=				75 100		370 Me(4.0 No.)	۲.
_							$\pm \pm$				4			_	·			
7											7					<u> </u>	1	
7											7					<u> </u>	 	
#							++-				#							
\exists											1							-
4				++++							4							-
‡			•					111			4					7		-
=										-	}							-
#											+	-		+				-
1										1	\equiv							-
1								$\pm \pm \pm$			1					<u> </u>	<u> </u>	-
																	<u> </u>	-
3						+]-						<u> </u>	-
#											+			+				-
\pm											\exists							
- 1						##					1							_
7								\Box			7			-			·	_
]											7				<u> </u>	<u>.</u>	<u> </u> 	_
OTES _		<u></u>										s	IGNA	TURE	13. Worky		DATE 6-21/	-
											_ 	N	OTES		/			
											-	KED LINE			Red-line from or	15192	handier than	
			•								_	X II						
ECK TO D	ATI IM D	STANCE			E-1						_	i					<u> </u>	
LON IOD	ט ואטוא	STANCE		·····	FI						J					Form GEU		اـــ 70

SHEET 18 OF 19

FIELD SCOUR REPORT

WBS:	45354.1.1 TIP:	COUNTY: Randolph				
	dge No. 215 over Bachelo					
EXISTING BRIDGE						
Information from:	Field Inspectionx Other (explain)	Microfilm	(reelpo	os:)		
Bridge No.: 215 Foundation Type: Abu	Length: 50' T utment #1: rubble masonn	otal Bents: <u>3</u> Ben y, Abutment #2 and Int	nts in Channel: <u>1</u> terior Bent: timber ca	Bents in Floodpl p, concrete footing	ain: <u>2</u>	
EVIDENCE OF SCO Abutments or End	UR(2) Bent Slopes: <u>Underminin</u>	g at southern end ben	t.			
Interior Bents: Sor	me degredation on stream	ward side of concrete	footing.			
Channel Bed: Nor	ne observed					
Channel Bank: Nor	ne observed					
EXISTING SCOUR F Type(3): Del	PROTECTION bris from old dismantled d	am serves as large rip	-rap in stream bed		<u> </u>	
•• ••	stream and downstream f					
Effectiveness(5): App	pears very effective					
Obstructions(6): Par	tially dismantled dam 100	oft. Upstream from exis	ting bridge.			

INSTRUCTIONS

- 1 Describe the specific site's location, including route number and body of water crossed.
- 2 Note scour evidence at existing end bents or abutments (e.g. undermining, sloughing, degradations).
- 3 Note existing scour protection (e.g. rip rap).
- 4 Describe extent of existing scour protection.
- 5 Describe whether or not the scour protection appears to be working.
- 6 Note obstructions such as dams, fallen trees, debris at bents, etc.
- 7 Describe the channel bed material based on observation and/or samples. Include any lab results with report.
- 8 Describe the channel bank material based on observation and/or samples. Include any lab results with report.
- 9 Describe the material covering the banks (e.g. grass, trees, rip rap, none).
- 10 Determine the approximate floodplain width from field observation or a topographic map.
- 11 Describe the material covering the floodplain (e.g. grass, trees, crops).
- 12 Use professional judgement to specify if the stream is degrading, aggrading, or static.
- 13 Describe potential and direction of the stream to migrate laterally during the bridge's life (approx. 100 years).
- 14 Give the design scour elevation (DSE) expected over the life of the bridge (approx. 100 years). This elevation can be given as a range across the site, or for each bent. Discuss the relationship between the Hydraulics Unit theoritical scour and the DSE. If the DSE is dependent on scour counter measures, explain (e.g. rip rap armoring on slopes). The DSE is based on the erodability of materials, giving consideration to the influence of joints, foliation, bedding characteristics, % core recovery, % RQD, differential weathering, shear strength, observations at existing structures, other tests deemed appropriate, and overall geologic conditions at the site.

			DES	<u>SIGN IN</u>	FORM	<u>ATION</u>					İ
Channel Bed Material(7): Slightly clayey coarse sand and gravel											
Channel Bank	Material(8):	Sandy clay to clayey sand									
Channel Bar	nk Cover(9):	Heavy vegetation (brush and trees)									
Floodplair	n Width(10):	150 feet									
Floodplair	Cover(11):	Heavy v	egetatio	n (brush a	and trees	s)					
St	ream is(12):	2): Aggrading Degrading Staticx									
Channel Migration Tendency(13): static											
Observations and	Other Comm	nents:									
DESIGN SCOUR E	ELEVATION	S(14)				Feet	_x_	Met	ers	_	
	BENTS B1										
							1		T		
	468.0	1									
										<u> </u>	
						<u> </u>		<u> </u>	L		
Comparison of DS The Geotechnical Hydraulic Design F SOIL ANALYSIS F	Engineering Report (Preli	Unit agre	ees with dated 5/	the theor 18/2011).				he Bridge	e Survey	and	
Bed or Bank											
Sample No.										ļ .	
Retained #4					,						<u> </u>
Passed #10		•									
Passed #40		: caran!-		المسالية	accifical	in the fie	ld No	7-	***		
Passed #200		oil samples were visually classified in the field. No									
Coarse Sand	lal	ab samples were tested during this investigation.									
Fine Sand								J - 			
Silt								 		-	
Clay LL	<u> </u>			-				- 			
PI											
AASHTO											<u> </u>
Station											
Offset					-						
Depth		·	_							<u> </u>	
20001											
									Form GEU	-017e	Revised 7/26/20

Reported by:

North Carolina Dept. of Transportation Division of Highways Materials and Tests Physical Testing Laboratory

Rock Compression

Rock Test Results

Bachelor ...

Sec Mod @ 40% A0% Mpei 1670

Br #215 over 06/01/2011	40% Uit. Load Ibf 16790
	Ultimate (corrected) losi
Structure Description: Fest Date:	Utitimate kai 16.3
itructure	Ultimate Ibf 42000
<i>∞</i> ≒	Unit Weight Ultimate ib/m3 ib/ 166.9 42000
	Weight 15f
~ £	H/D Ratto Weight ibf 2.14 1.0600
366723 45354.1. Randolpi B-51081.	Specimen Height in
	Area In² 2.7435
per.	Diameter in 1.8690
Lab Number: Project #: County: Tip ID:	Sample No. Diameter in in in in in in in in in in in in in
,	